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ABSTRfACT 

Adaptive/general learning algorithms using varying neural network 
models are considered for the intelligent control o f  robotic z.:m 
plus dextrous hand/manipulator systems. Results are summarized a n d  
discussed for the use of the Barto/Sutton/fAnderson neuronlike, un- 
supervised learning controller as applied to the stabilization of an 
inverted pendulum on a cart system. Recommendations are made for t h e  
application o f  the controller and a kinematic analysis for trajec- 
tory planning to simple object retrieval (chase/approach and cap- 
ture/grasp) scenarios in two dimensions. 

, INTRODUCTION 

Overview 

The research work reported herein is important to t h e  f u t u r e  
development of the NASA/JSC E V A  Retriever. This highly a u t o n o m c u s ,  
free-flying robot or robotic system is comprised of MMU, a r m  and 
smart hands. I t  is being developed to aid crewmen in the petfor- 
mance of E V Q  tasks including the chaser capture and return capabili- 
ty required for adrift crewmen or station equipment. The ultimate 
goal of the work in developing this system is to enhance the  e f - f e c -  
tiveness of E V f i  crewmen 11, 231. 

The intelligent control of robotic armlhand systems using 
neural network learning controllers is very relevant to €‘.:A Retrie- 
ver dev-elopment. This follows because of the need for autonomous, 
adaptive behavior in both planned and unplanned contexts in %he 
space environment. Neural networks and related advanced learnimj 
controllers offer such capabilities C233. 

and development of neural networks or other types of advanced 
learning controllers as: 

I 

~ The work reported herein is concerned with the investigation 

( a )  Supervised controllers with training which because of 
their connective, associative memory structure can 
develop significant controller generalization capabili- 
ty. Such generalization can lead to similar performance 
of the retriever arm/hand controller in different but 
analogous physical system situations and in stochastical- 
ly related loading/excitation environments. 

new learning situations and also exhibit significant 
generalization capability. A s  learning developrs. and un- 
familiar situations become familiar o n e s ?  these neirral 
networks should provide feedforward compensation with 
less compensation via the feedback path C7, 1 1 ,  15, 263. 

(b) Unsupervised controllers which can self train/adapt to 
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Neural Networks for Intelliqent Control 

Neural networks are massively para1 lel, distributed processing 
systems. They have the ability to continuously improve their perfor- 
mance via dynamic learning C 7 ,  9, 15-18, 361. 4s used in this re- 
port, neural networks refers to "artificial", i.e., programmable 
systems of processing elements. A s  such they form a research area 
of intense interest in artificial intelligence. 

tionally intensive areas of adaptive signal processing, as, e.g., 
pattern recognition, real-time speech recognition and image inter- 
pretation. Recently there ha5 been a resurgence o f  interest in 
neural networks because of (a) Advances in training algorithms for 
networks9 and (b) Availability of extremely fast, relatively inex- 
pensive computer5 for implementing these algorithins. These deuelop- 
ments have lead to the consideration of neural networks f o r  the 
real-time identification and control of large flexible/a~-ticulated 
aerospace and robotic systems C7, 27, 281. 

Neural networks can provide mechanisms fur (a) Associative 
memory, (b) Pattern recognitionr and (c) Abstraction. These a r e  
emergent properties of networks of neuronlike units with adaptive 
synaptic connections C10, 1 4 ,  22, 29 ,  321. These mechanisms arise 
from the neural network being a system of interconnected "neuron-  
like" elements modeled after the human brain. This system operates 
on input data in an "all at once" mode rather than in a conventional 
computer's "step by step" algorithmic approach C7, 9, 291. Differ- 
ent learning architectures can be used in tt-a-ining for intelligent 
control. This is done to provide appropriate inputs to the system sa 
that th'e desired responses are obtained. Uncertainty and i7oise  c a n  
be handled by a neural network via the Hebbian type of associative 
learning arising from adaptively modified connection strengths C21, 
291. Kawato el a1 C15-183 indicatg that a neural network model can 
be used to control voluntary movement with applications to robotics. 
Implemented as a multilayered, hierarchically intelligent control 
system. neural networks can be implemented to effect the fo1lowing: 

In1 tial neural network research concentrated on the computa- 

(a) Pattern recognition/ condition matching 
(b) Trajectory and approach, grasping, etc. opertation 
(c) "Point of view" transformations - as, e.g., visual to 

(d) System (robot, object, etc.) state observer or model 

(e) Generation o f  motion/actuator commands. 

sensorlend effector to object, etc. 

synthesis and simulation behavior 

Adaptive control i 5  useful for systems which perform over the 
large ranges o f  uncertainties which result from large variations in 
physical and operating parameter values, environmental conditions, 
and signal inputs. However, adaptive control as such (i.e., without 
unsupervised learning/unanticipated problem solving features) has 
difficulty with the following generic problems i n  designing 
controllers: 

* Sensor data overload - arising from (a) Data redundancy 
16-3 



per ser and (b) Specialized, rarely required data 
* Multi-s~ectral, multi-sensor data fusion and maociing/use 

i n  the proper feedback control law 
% Need for system robustness to handle large paraineter 

excursions 
* Required high-speed. real-time control degradation resul- 

ting from time consuming artificial intelligence calzuia- 
tions 

roboticllarge control systems. 
9 Unsolved sensor choice and placement problems for 

I t  should be noted that human intervention is used in traditional 
control systems operating with large uncertainty. Such interven- 
tion is unacceptable in many real-time applications. This is espec- 
ially true for the hostile space environment in which the NASA E V R  
Eetriever is to operate C 1 ,  233. It means that automatic 1:f.chniques 
for handling uncertainty must be developed. Neural networks s h o w  
great promise for the intelliqent, unsupervised control 01' the rnul- 
tiple arm plus dextrous robotic hands o f  the Retriever. T h e  ne..:t 
section of the  report describes the author's research work wit:! the 
Barto et a1 intelligent controller which is a special k i n d  of n e u r a l  
network with associative search and associative critic neuronliLe 
elements . 

ACElASE NEURONLIKE LEARNING CONTRULLER 

The Barto/Sutton/Anderson adaptive learning controller is 
composed of two types of neuron1 i ke elements with 5ig1-1i f icant 
unsuper-vised problem-solving capacities. These elements a r e  the 
associative search element iASE) apJ aijaptil ip critic e l e m ~ s  !Cr;:CE,, 
Barto et a1 1983 used a single element of each type. Their ASE 
element exhibits a learning strategy which is similar to the earlier 
"BOXES" adaptive problem solving system of Michie and Chambers 
C24, 251. The ASE/ACE elements embody refinements discussed in the 
literature by Barto and colleagues C2-6, 30-311. They evolved from 
the heterostatic brain function and adaptive systems work of K l o p f  
C 1 9 ,  201. Adding a single ACE element improves the learning perfor- 
mance over that o f  a single ASE alone. This can b e  clearly shown by 
comparing the problem-solving capabilities o f  BOXES with those of a 
single ASE/single ACE learning system and solving t h e  control prob- 
lem o f  balancing an inverted pendulum on a cart. I t  is interesting 
to note that strong analogies exist between the behavorial inter- 
pretations of the ASE, ACE adaptive elements and animal behavior in 
instrumental learning. There are also strong parallels with the 
"bootstrap adaption" systems work o f  Widrow et a1 C33-357. This 
work considered the ( a )  punishlreward critical learning and ( b )  pat- 
tern recognizing control problems. Relevant artificial (i.e.? 
programmable) neural networks the ASE, ACE neuronlike elements are 
significant. This follows because they indicate that if adaptive 
elements are to learn effectively as network components, then they 
are constrained to have adaptive capabilities at least as robust as 
these Barto et a1 learning controller elements C21. 

Figure 1 depicts the inverted pendulum on a cart system which is 
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Figure 1. Representative Model for Cart and Inverted Pendulum 
System. 

h 

I '  J I  

Figure 2. ASE and FICE Controller for Cart Plus Inverted Pendulum 
System 

16-5 



to be controlled. Here the cart can move within the bounds 
indicated on a one-dimensional track. The pendulum can move only in 
the vertical plane of the cart and the track. The applied force 
F t) results from the output of the learning controller. I t  is 
applied in a bang-bang ( + / - I  manner and acts with a fixed magnitude 
to the left or right at discrete time intervals. The pendulum-cart 
system is described by a four state variable model in the time 
domain C81. The four state variables are as follows: !a) )cc - the 
?osition of the cart on the track, 
pendulum with the vertical9 (c) - the cart velocity, and (d) 
d p  - the rate of change of the pendulum angular displacement. 
~ t a t e  variable model for this system can be written as 

Rbr . ~ 

(b)@p - the angle of  the 

The 
I 
I 

1 &*SglltVe) + Fapp( t ) ]  

Physical parameters in the above equations specify pendulum length 
and ma55, cart mass, the coefficients of friction between the cart 
and the track and at the pin connection between the pendulum and the 
cart, the applied control force, the force due to gravity, and time. 
Table 1 defines the notation used in equation 1. 

The system of first order equations has been solved using second 
order numerical intergration procedures which have been implemented 
in the FORTRAN computer program NRLNET. I n  implementing the 
learning controller algorithm the state space has been partitioned 
based on the following 252 quantization interval thresholds: 

I 

( 1 )  Cart position %c: +/-  0.8, + / -  2.4 m ,(4 quantiza- 

@p: 0 , + / -  1 ,  + / -  6 ,  

tion intervals including failed regions above and 
below 2 . 4  m) 

+ / -  12 degrees, (7 quantization intervals including 
failed regions.above and below 12 degrees) 

( 3 )  Cart velocity Xc: +I-- 0.5, +/-00m/s, (3 quantiza- 
tion intervals) 4 

( 4 )  Pendulum angular velocity @p: + / -  50, +/-a degrees 
per second, ( 3  quantiiation intervals) 

( 2 )  Pendulum angular displacement 

Fiqure 2 depicts the ASE plus ACE adaptive learning controller 
of Barto et a1 C21. The neuronlike learning system can be described 
2~ the following equations: 

I Element outDut v(t) which is determined from the decoded stats 
I quantization interval vector input 
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Here .the noise n(t) is a real random variable with probability 
function p(x) and f is either a threshold, sigmoid, or identity 
transfer function. For the work reported herein, p(;<) is the zero 
mean Gaussian distribution with standard deviation c ,  and f is 
the bang-bang type threshold function: 

f ( x )  = +1, x .EG. 0 (applied force action 

- 1 9  x .LT. 0 (applied force action 
to the right) 

to the left) 

! 3 )  

AS€ weiqhts w(I,t), I .LT .  I .LT. N which change over discrete time 
as follows: 

In equation 4 :  

ALPHA = positive constant determining the rate o f  
change in w(I,t) 

r(t) = real-valued reinforcement at time t 

e(I,t) = eligibility at time t via the input pathway I. 

Elipibility traces for the ASE weiqhts which exponentially cleca:i 
with increasing time, given in equation 5 as: 

. e(I,t+l) = D E L T A  * e(I,t) + (1-DELTA) * y(t) * x(I,t) ( 5 )  

in which, 

DELTA = the eligibility decay rate. 

ACE weiqhts v(I,t). 1 .LT. I .LT. 1'4 which change over dixrete time 
as follows: 

v(I,t+l) = v(I,t) + BETA * rhat(t) * xbar(1,t) ( 6 )  

In equation 6, 

BETA = positive constant defining the rate of change 
o f  v(r,t) 

rhat(t) = r(t) + GAMMA * p(t) - p(t-l), the i m p r a v e d  
internal reinforcement sional for the critir 
e 1 emen t 

xbar(I,t) = LAMBDA * xbar(1,t) f (1-LAMBDA) * x(17t), 
the eligibility t r a c e s  far the ACE w e i g h t s  

= 5 V ( I , t )  * %(I,t), the prediction of eventual p(t) 
reinforcement 
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GAMMA = reinforcement learning rate 

I LAMBDA = sbar(1,t) trace delay weight 

Barto and Sutton C2, 51 explain the derivation of the ACE learning 
rule 3s used above. Additional discussion of the A S € ,  ACE adaptive 
learning controller can be found in references C30, 311. 

ASE/ACE LEARNING CONTROLLER RESULTS 

This section of the report discusses representative results 
obtained by the author with his FORTRAN computer program tdRLNET131 
implementing the Barto et a1 ASE/ACE neuronlike learning control- 
ler. This program is the result of several modifications by the 
author to incorporate general data file input and the file and pr11-I- 
ter  plot output of the applied control force and the four state 
variables as functions of time. The original FORTRAN progl-am 
NRLNETOO was the author’s implementation of a PASCAL pr-ogi-am ~1-1tte1-1 
i n  1988 by Doug Walker of GHG in support of the Special P r o j e c t s  
Branch (EC5) in the Crew and Thermal Svstems D i v i s i o n  at IVASA/JSC.  

TABLE 1. SUMMARY OF PHYSICAL PARAMETER VALUES FOR CART PLiJS INVERTED 
PENDULUM SYSTEM 

j 

Mc = Cart Mass, 1.0 k g  
Mp = Pendulum Mass, 0.10 kg 
Lp = Pendulum Length, 0.50 m 

I MUc = Cart Coefficient of Coulomb Friction, 0.005 
. MUp = Pendulum/Cart Pin Coefficient of Friction, @.OCjOC,2 

Fapp = Magnitude o f  Force Applied to Cart in x Directian. 
N m sec/rad 

I 
( + / - )  10 N 

TABLE 2. SUMMARY O F  THE ASE/ACE NEURONLIKE LEARNING CONTROLLER 
PARAMETERS 

ALPHA = Rate Constant for AS€ Weights, 1000.0 
BETA = Rate Constant for ACE Weights, 0.50 
DELTA = Decay Rate for AS€ Eligibility Traces, O.?O 
GAMMA = Learning Rate for Improved Internal Reinforce- 

LAMBDA = Decay Rate for ACE Eligibility Tracesr 0.95 
ment9 0.95 

A = Mean Value for Gaussian Normal Distribution Used 
to Define ASE/ACE Output Noise Function, 0.00 and 
0.10 

e = Standard Deviation Value for Gaussian Normal Dis- 
tribution Used to Define ASE/ACE Output Noise 
Function, 0.01, 0.05, 0 . 1 0 3  0.15, 0.20, and 0.25 

Table 1 gives the physical and control parameter values used in 
I the simulation work with NRLNET131 for the cart plus inverted pendu- 

lum system depicted in Figure 1. Values used for the ASE/ACE neuron- 
~ like learning controller parameters are summarized in Table 2. These 
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k l  il. 0 

Figure 3. Example Simulation Re- 
sults Showing Learning 
Performance o f  ASE/ACE 
Learning Controller 
System 

uw - 

-IN -1 
Figure 4. Average Number o f  Trials 

f o r  Five Runs as a Func- 
tion o f  Standard Devia- 
tion With Mean Value as 
Parameter 

Figure 5. Applied Force Fapp(t), N 

16-9 



I 
+98c 

0 Figure 6. Cart Displacement Figure 7. Cart Velocity M G ( t ) ,  
Y e ( t ) ,  m m/sec 

Figure 8. Pendulum Angular Dis- Figure 9. Pendulem Qngular 
I placemente,(t), r a d  Velocity ep(t), rad/sec 
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parameter values were used to generate the simulation performance 
results plotted in Figures 3 and 4 .  Figure 3 plots curves for the 
number of time steps until failure versus the trial number. These 
are typical curves for individual runs of the ASE/ACE learning con- 
troller system. Figure 4 gives plots of the average number o f  trials 
which are required to stabilize the cart plus pendulum system f o r  
5000 time steps (100 seconds with dt = 0.02 seconds). The average 
number of trials are given as a function of the standard deviation 
for the Gaussian normal random noise process with the mean for the 
process as parameter. The mean equal zero curve indicates a trend 
toward an increasing number of trials as the standard deviation is 
increased from 0.01 to 0.25. The other curve for the mean equal to 
0.10 shows relative constancy over the same range in standard devia- 
tion. These runs were originally made to examine the sensitivity of 
the FISE/ACE learning controller performance to variation in the 
noise process used in generating its output function. A n  additional 
objective was to develop a base from which the generalization and 
robustness properties of the controller weights could b e  investi- 
gated. Five runs were used to generate each point plotted in Figure 
4 .  The results shown in Figures 3 and 4 are in general agreernpnt 
with those published by Barto et a1 C21. However, the author has 
found that hi5 NRLNET131 implementation o f  the ASE/ACE controller 
usually takes a lesser number of trials for successfully learning to 
stabilize the cart plus pendulum system for both the 5000dt (100 
seconds) cases shown here and the 200,000 At (66.7 minutes) case5 
which the author ran to directly compare his results with those o f  
Barto et al. Extensive runs were not made for the 200,000 dt (66 .7  
minutes) stabilization period because of the excessively long 
elapsed' time re.required for the V A X  system available to the author 
to return answers for a single run. 

Figure 5 shows the controller output force which is applied to 
the cart in stabilizing the inverted pendulum. Here the applied 
force is plotted a5 a function as a function of time over the first 
l004t intervals ( 2  seconds). Extensive runs have been made with the 
ASE/ACE controller system and all exhibit the characteristic + / -  10W 
on-off or bang-bang behavior with At = 0.02 s e c .  This value of the 
time increment should be adequate, based on physical system oscilla- 
tion behavior, for the second order numerical integration scheme 
used. 

Figures 6-9 plotathe four state variables: cart displacement 
(XJ, cart velocity (s), pen ulum angular displacement (@I9 and 
pendulum angular velo7ity (& 3 respectively. They are afso plotted 
as functions of time over the first lOOdt intervals ( 2  seconds). 
Consideration of these and similar time domain results for the state 
variables and the applied force indicates that (a) significant in- 
efficiencies can occur with respect to the input force and its im- 
pact on the actual state variable behavior o f  the cart plus pendulum 
system, (b) w i t h d  t = 0.02 sec there may be some interaction be- 
tween the numerical integration method used and the dynamics o f  the 
ASE/ACE learning controller. To investigate (b) above9 additional 
runs were made in which At was reduced (At= 0.01, 0.005, 0.001 
s e c ) .  These results although not included here did show significant 
reduction with.decreasing At in the bang-bang nature of the input 
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force and the higher frequency oscillations present in the state 
behavior over time (especially for the cart linear a n d  the pei?dulum 
angular velocities). 

The author ha5 extended the single ASE/single ACE learning Con- 
troller system to include two search and two critic elements. The 
elements in each pair work in parallel. Since the outputs are aver- 
aged in the 2 ASE/2 ACE learning controller system, it hat; -Fapp, 0 ,  
+Fapp as three possible outputs. This extension was implemented i:i 

the author’s FORTRAN computer program NRLNET20. Initial runs indi- 
cate that the new controller as implemented has good performance up 
to a maximum learning point (maximum time for stability as a func- 
tion of number of trials). Beyond this point the learning is severe- 
ly degraded with increasing trials, or a form of limit cycle behav- 
ior occurs. These results indicate that the split-decision nature o f  
the 2 ASE/2 ACE system as implemented in its averaging form may 
cause the observed behavior. In this case using a 3, 5, et:c.(i.e.. 
odd number o f  elements) in the ASE/ACE system may be warranted. 
These cgnti-Ollel-s would also have a “smoother” (. i .e. , les.5 bang- 
bang) control action. Another alternative to improve p e r f o r m a n c e  1s 
to more richly connect the elements both within and aci-ar.., the 
search element and the critic element layers. This would gi.ie the 
fiSE/ACE neuronlike controller system a counter propagation/Grossberg 
layer plus Kohonen layer type o f  neural network structure C 1 2 ,  1 3 7 .  

CONCLUSIONS 

An examination has been made of the use of neural networks far 
the intelligent control of robotic arm-plus hai>d/manipula+o!- 5ys- 
tems fdr. the EVA Retriever. Based largely to the present time oc a 
review o f  the literature and computer simulation . w o r k ,  this examina- 
tion has indicated that a hierarchical, multi-layer neural netlrrork. 
system can be used for intell igent control. Baseline feedforward 
control is used in conjunction with trajectory planning in these 
systems. Joint torque feedback provides the correction signal. These 
systems have the characteristic that as additional response behav- 
iors are learned, much of the control action passes to the feedfor- 
ward path. 

control has focused on the use and extension o f  the Barto et a1 
neuronlike ASE/ACE intelligent controller. A FORTRAN family of com- 
puter programs (NRLNETXX) were developed by the author as extensions 
of a previous Pascal language implementation of the controller at 
NASA/JSC. Work with these programs has concentrated on the follow- 
ing: (a) Verifying published results for convergence to stable solu- 
tion (number of trials for a specified period of stability), !b) 
Developing graphics, etc. feedback tools to monitor- system behavioi- 
(as, e.g., given by the applied control force and the f o u r  state 
variables as functions of time), (c) Investigate learning control 
behavior as a function of the number of unsupervised trials required 
to obtain stability and the random process parameters (Gaussian pro- 
cess mean and standard deviation), and ( d )  Basic extensions to the 
learning controller network incorporating two adaptive search ele- 
ments ( A S E s )  and 2 adaptive critic elements ( A C E S )  in its structure. 

Additional investigation into neural networks for intelligent 
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RECOMMENDAT IONS 

T h i s  section of the report presents recommendations f o r  the 
intelligent control of smart robotic arm plus hand systems using 
neural networks. These recommendations are based on the results 
presented above and on additional related work done by the authgr 
during Summer 1988. They are presented in the form of a research 
and development program plan. The R & D program plan gives activ- 
ities that can continue the author's research begun during the i988 
summer program. 

1. 

2. 

3. 

4. 

5. 

6 .  

( 1 )  Investigation of two dimensional graphics as  a kinematic 
simulation tool for planning EVA object retrieval in terms 
of the approach to and grasping of objects using an artic- 
ulated two-link arm/scissor hand system. 

( 2 )  Implementation o f  dynamics, sensing, and control models o f  
the articulated two-link arm/scissor hand system. i t  is 
desired to mount this arm/hand system on a cart to repre- 
sent the EVA Retriever in two dimensions. 

logic reasoning as adaptive/general learning systems c o n -  
prised of (a) Network architectures, (b) Transfer func- 
tions, and (c) Dynamic learning rules. These systems can  
employ joint torque and state vector feedback to cont.~-ol 
the arm/hand system(5) in object retrieval as discussed 
above. 

(4) Investigation of extensions to the Barto/Anderson neuron- 
like .learning system and counter propagation/back propaga- 
tion type networks to the related problem o f  stabilizing/ 
controlling the motion of simple and compound (articulated 
linkage) pendulums on d cart. Successful employment here 
can lead to similar use with the arm/hand retriever sys- 
t ems. 

( 3 )  Examination o f  hierarchical neural rietw0rk.s w i t h  fuzzy 
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